On Maximal Non-Disjoint Families of Subsets
نویسندگان
چکیده
منابع مشابه
Mrówka Maximal Almost Disjoint Families for Uncountable Cardinals
We consider generalizations of a well-known class of spaces, called by S. Mrówka, N ∪R, where R is an infinite maximal almost disjoint family (MADF) of countable subsets of the natural numbersN . We denote these generalizations by ψ = ψ(κ,R) for κ ≥ ω. Mrówka proved the interesting theorem that there exists an R such that |βψ(ω,R) \ ψ(ω,R)| = 1. In other words there is a unique free z-ultrafilt...
متن کاملMaximal non-commuting subsets of groups
Given a finite group G, we consider the problem of finding the maximal size nc(G) of subsets of G that have the property that no two of their elements of commute. After constructing a large noncommuting subset of Sn, we consider the definition and classification of extraspecial p-groups and focus on such a group: S(p.n). We show that nc(S(2, n)) = 2n+ 1 and that S(p, n) ≥ pn+ 1.
متن کاملMaximal subsets of pairwise non-commuting elements of some finite p-groups
Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in X. If |X| ≥ |Y | for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. In this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian...
متن کاملAlmost disjoint families on large underlying sets
We show that, for any poset P, the existence of a P-indestructible mad family F ⊆ [ω]א0 is equivalent to the existence of such a family over אn for some/all n ∈ ω. Under the very weak square principle ¤∗∗∗ ω1,μ of Fuchino and Soukup [7] and cf([μ]א0 ,⊆) = μ+ for all limit cardinals μ of cofinality ω, the equivalence for any proper poset P transfers to all cardinals. That is, under these assumpt...
متن کاملOn disjoint crossing families in geometric graphs
A geometric graph is a graph drawn in the plane with vertices represented by points and edges as straight-line segments. A geometric graph contains a (k, l)-crossing family if there is a pair of edge subsets E1, E2 such that |E1| = k and |E2| = l, the edges in E1 are pairwise crossing, the edges in E2 are pairwise crossing, and every edges in E1 is disjoint to every edge in E2. We conjecture th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science and Education of the Bauman MSTU
سال: 2017
ISSN: 1994-0408
DOI: 10.7463/0517.0001215